Telegram Group & Telegram Channel
Как ускорить вычисления с массивами с помощью NumExpr

NumExpr — мощный инструмент для ускорения вычислений с массивами в Python, который может значительно повысить производительность при работе с большими данными и сложными математическими выражениями.

Преобразовать медленный цикл, который занимал 650 мс, в вычисление за 60 мс — это реальность с использованием NumExpr.

Вот как NumExpr ускоряет вычисления 🔽

1️⃣ Частичное выполнение в кэше

NumExpr избегает создания огромных временных массивов, разбивая их на части, соответствующие размеру кэша.

Эти части обрабатываются и передаются через легковесную виртуальную машину, что ускоряет выполнение и оптимизирует доступ к памяти.

2️⃣ Ускорение с помощью SIMD и VML

Использование инструкций SIMD (Single Instruction, Multiple Data) позволяет обрабатывать несколько элементов данных одновременно.

При доступности NumExpr использует библиотеку Intel Math Kernel Library (MKL) для трансцендентных функций (таких как sin(), cos(), exp()), что значительно повышает производительность.

3️⃣ Поддержка многозадачного масштабирования

NumExpr автоматически распределяет вычисления между всеми ядрами процессора. Это позволяет эффективно использовать мощности многозадачности, ускоряя вычисления даже при больших данных.

Для работы с NumExpr достаточно заменить стандартные операции NumPy на аналоги NumExpr:
import numexpr as ne
import numpy as np

# Пример массивов
a = np.random.random(1000000)
b = np.random.random(1000000)

# Обычная операция NumPy
result = np.sin(a) + np.cos(b)

# Эквивалент NumExpr
result_ne = ne.evaluate('sin(a) + cos(b)')


Библиотека дата-сайентиста #буст
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/dsproglib/6438
Create:
Last Update:

Как ускорить вычисления с массивами с помощью NumExpr

NumExpr — мощный инструмент для ускорения вычислений с массивами в Python, который может значительно повысить производительность при работе с большими данными и сложными математическими выражениями.

Преобразовать медленный цикл, который занимал 650 мс, в вычисление за 60 мс — это реальность с использованием NumExpr.

Вот как NumExpr ускоряет вычисления 🔽

1️⃣ Частичное выполнение в кэше

NumExpr избегает создания огромных временных массивов, разбивая их на части, соответствующие размеру кэша.

Эти части обрабатываются и передаются через легковесную виртуальную машину, что ускоряет выполнение и оптимизирует доступ к памяти.

2️⃣ Ускорение с помощью SIMD и VML

Использование инструкций SIMD (Single Instruction, Multiple Data) позволяет обрабатывать несколько элементов данных одновременно.

При доступности NumExpr использует библиотеку Intel Math Kernel Library (MKL) для трансцендентных функций (таких как sin(), cos(), exp()), что значительно повышает производительность.

3️⃣ Поддержка многозадачного масштабирования

NumExpr автоматически распределяет вычисления между всеми ядрами процессора. Это позволяет эффективно использовать мощности многозадачности, ускоряя вычисления даже при больших данных.

Для работы с NumExpr достаточно заменить стандартные операции NumPy на аналоги NumExpr:

import numexpr as ne
import numpy as np

# Пример массивов
a = np.random.random(1000000)
b = np.random.random(1000000)

# Обычная операция NumPy
result = np.sin(a) + np.cos(b)

# Эквивалент NumExpr
result_ne = ne.evaluate('sin(a) + cos(b)')


Библиотека дата-сайентиста #буст

BY Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение




Share with your friend now:
tg-me.com/dsproglib/6438

View MORE
Open in Telegram


Библиотека data scientist’а | Data Science Machine learning анализ данных машинное обучение Telegram | DID YOU KNOW?

Date: |

What is Secret Chats of Telegram

Secret Chats are one of the service’s additional security features; it allows messages to be sent with client-to-client encryption. This setup means that, unlike regular messages, these secret messages can only be accessed from the device’s that initiated and accepted the chat. Additionally, Telegram notes that secret chats leave no trace on the company’s services and offer a self-destruct timer.

NEWS: Telegram supports Facetime video calls NOW!

Secure video calling is in high demand. As an alternative to Zoom, many people are using end-to-end encrypted apps such as WhatsApp, FaceTime or Signal to speak to friends and family face-to-face since coronavirus lockdowns started to take place across the world. There’s another option—secure communications app Telegram just added video calling to its feature set, available on both iOS and Android. The new feature is also super secure—like Signal and WhatsApp and unlike Zoom (yet), video calls will be end-to-end encrypted.

Библиотека data scientist’а | Data Science Machine learning анализ данных машинное обучение from jp


Telegram Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение
FROM USA